If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+18w=72
We move all terms to the left:
4w^2+18w-(72)=0
a = 4; b = 18; c = -72;
Δ = b2-4ac
Δ = 182-4·4·(-72)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{41}}{2*4}=\frac{-18-6\sqrt{41}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{41}}{2*4}=\frac{-18+6\sqrt{41}}{8} $
| 9+6x+20=3x+17+x | | s/14+12=16 | | (N+7)(7n+8)=0 | | 8x-12=3(x-9)+5(x+3 | | x+2x-3-(x-7)=12 | | 6(y-77)=90 | | (x+5/3)=4 | | 4-7x+6x=11 | | u+6=-80 | | 6(y−77)=90 | | c÷ 710= 17 | | 61=-7t+19 | | 21=1+5m | | (M+4)(3m-5)=0 | | 40+5m=180 | | A=5n×5 | | s+237=5 | | 12-14/3m=+2/3m | | 9u+4=58 | | 6x+7=9(x+8) | | 6(d+6)=90 | | 7x+6x=7 | | 11=2w-21 | | w-1.9=7.78 | | -7x+10=9x+18 | | 9j1+23=86 | | -8(x-5)=16 | | X^2-Id+6=0 | | 53=2u+15 | | 11c+1+36=180 | | 4=(3y+13) | | x-1=35 |